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Abstract: We present single-shot high-performance quantitative phase imaging with a physics-
inspired plug-and-play denoiser for polarization differential interference contrast (PDIC) mi-
croscopy. The quantitative phase is recovered by the alternating direction method of multipliers
(ADMM), balancing total variance regularization and a pre-trained dense residual U-net (DRUNet)
denoiser. The custom DRUNet uses the Tanh activation function to guarantee the symmetry
requirement for phase retrieval. In addition, we introduce an adaptive strategy accelerating
convergence and explicitly incorporating measurement noise. After validating this deep denoiser-
enhanced PDIC microscopy on simulated data and phantom experiments, we demonstrated
high-performance phase imaging of histological tissue sections. The phase retrieval by the
denoiser-enhanced PDIC microscopy achieves significantly higher quality and accuracy than the
solution based on Fourier transforms or the iterative solution with total variance regularization
alone.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantitative phase imaging (QPI) is an emerging imaging modality that enables the examination of
transparent biological samples for biomedical applications by probing alterations in the amplitude
and phase of the illumination light [1]. Quantitative phase imaging can be largely categorized into
two classes: interferometry-based holography [2] and optical diffraction tomography [3,4], and
intensity-only methods such as those based on phase contrast, differential interference contrast
[5,6], the transport of the intensity equation (TIE) [7,8], and ptychography [9–12]. QPI has
become a powerful tool for measuring biomass distribution and time-lapse imaging of cellular
dynamics for biomedical monitoring and diagnosis [13–16] with recent advances in spatial
resolution [17], imaging speed [18–21], high content imaging [22], polarization-sensitive imaging
[3,23], and 3D imaging [24–27]. Multiplexing approaches in polarization [28] and color [29]
have also been developed for single-shot phase imaging.

QPI belongs to the class of image restoration (IR) problems, traditionally approached using
classical methods such as Fourier transforms [30] and variational methods [31]. Recently,
machine learning (ML) techniques have garnered significant attention in the field of IR, finding
applications in QPI and microscopy for superresolution imaging [32], lensless computational
imaging [33,34], single-molecule localization [35–38], protein localization at a cellular level
[39], particle tracking [40–42], and biomedical applications such as digital pathology [43–45]
and label-free virtual staining of tissue [46,47].

One particular ML approach, Plug-and-Play (PnP) learning-based computational imaging
[48,49], departs from a purely computational or data-driven algorithm. Instead, utilizing a
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denoiser, it can uniquely combine a forward model (physics constraints) and data-driven priors
on the solution distribution. Unlike traditional model-based methods, which need to specify
the explicit and hand-crafted image priors, plug-and-play IR implicitly defines the prior via
the denoiser, offering the possibility of leveraging a deep convolutional neural network (CNN)
denoiser to improve effectiveness [50]. Similarly, physics-based learning facilitates designing
optimized coded illumination patterns for quantitative phase imaging, reducing the number of
illumination patterns required while maintaining the image quality [51]. These developments
underscore the growing interest in Physics-inspired machine learning to overcome existing
challenges and enhance imaging performance.

Quantitative phase imaging strives to enhance four figures of merit: space-bandwidth product,
time-bandwidth product, spatial phase sensitivity, and temporal phase sensitivity [1]. While it
is difficult to maximize each of these parameters in one single system, we recently introduced
a single-shot quantitative phase imaging technique using polarization differential interference
contrast (PDIC) [52], which performs well in all four figures of merit with single snapshot
broadband illumination and common-path geometry. This PDIC microscopy is capable of high
spatial resolution phase imaging in real-time, limited only by the camera frame rate. A total
variance (TV) penalty was introduced in the PDIC phase recovery to compensate for the lack
of sensitivity to the phase gradient along the direction orthogonal to the DIC shear. In this
work, we contribute to the evolving field of Physics-inspired machine learning and quantitative
phase imaging and demonstrate the superior image quality and accuracy in phase recovery
achieved by a Physics-inspired Plug-and-Play Denoiser-enhanced PDIC microscopy, which
incorporates a pre-trained deep Dense Residual U-net (DRUNet) denoiser [50,53] on top of
the total variance regularization for polarization differential interference contrast microscopy.
This new physics-inspired approach significantly outperforms the solution based on Fourier
transforms or the iterative solution with total variance regularization alone, promising single-shot,
high spatial resolution, and high-quality quantitative phase imaging for vast applications in
biomedicine.

The paper is organized as follows. We first introduce polarization differential interference
contrast microscopy and its integration with a plug-and-play pre-trained Dense Residual U-net
denoiser. Then, we provide implementation details utilizing the alternating direction method of
multipliers (ADMM) in section 2. In section 3, we validate the effectiveness of this DRUNet-
enhanced PDIC microscopy through simulated data and phantom experiments. Finally, we
demonstrate the high-performance phase imaging of histological tissue sections. We evaluate the
phase recovery quality and accuracy improvement using various image quality metrics.

2. Method and materials

2.1. Polarization differential interference contrast microscopy

The PDIC microscope we recently introduced [52] is briefly outlined here. The PDIC microscopy
is implemented on a Nomarski DIC microscope (Fig. 1). The incident wavefront and its replica
with orthogonal polarization directions pass through the same sample at an offset (DIC shear
s). The incident wavefront E1 and its replica E2 have equal amplitudes |E1 | = |E2 | =E0 and
orthogonal polarization directions.

The two waves then recombine and interfere, producing an interference pattern recorded by a
polarization-sensitive camera. Inside the reference frame (viewed facing the impugning beam) of
the polarization camera, the net electric field is expressed as

x̂Es
′ − ŷEp

′ = x̂E0
1 + exp (i∆)

√
2

− ŷrE0
1 − exp (i∆)

√
2

exp (iδ) (1)

where x̂ and ŷ are the unit vectors along the x and y directions, ∆ ≡ s · ∇ϕ + ϕb, ϕ is the phase
profile of the specimen, s is the DIC shear, ϕb is the DIC bias, and r and δ are the reflectivity ratio
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Fig. 1. A schematic diagram of an inverted PDIC microscope.

and phase difference between the s and p polarization components by the deflection mirror in the
microscope [52]. The unfiltered interference pattern produced by Eq. (1) is recorded, yielding
I = (I0◦ , I45◦ , I90◦ , I135◦ ) for the intensity of light linearly polarized along 0o, 45o, 90o, and 135o

directions, respectively, and the Stokes vector

S(ρ) =
⎛⎜⎜⎜⎜⎝

S0(ρ)

S1(ρ)

S2(ρ)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
I0◦ (ρ) + I90◦ (ρ)

I0◦ (ρ) − I90◦ (ρ)

I45◦ (ρ) − I135◦ (ρ)

⎞⎟⎟⎟⎟⎠
(2)

in a single snapshot where ρ = (x, y) denotes the lateral spatial coordinates. The PDIC microscopy
relates the measured Stokes vector to the optical properties of the specimen via

S0
′ = 2r2I0

S1
′ = 2r2I0 cos∆

S2 = −2rI0 sin δ sin∆

(3)

where S0,1
′ = [(1 + r2)S0,1 − (1 − r2)S1,0]/2 and I0 = E2

0 [52]. We obtain the phase map by
solving s · ∇ϕ = ∆ − ϕb = atan2(S2,−S′

1 sin δ) − ϕb under the optimal measurement condition
for phase retrieval (ϕb = π/2). For convenience, the phase retrieval problem can be rewritten as
the determination of the phase profile u(x, y) given the measured phase gradient ∂u/∂x ≡ ∂xu =
ϕx(x, y) assuming the DIC shear along the x-axis. A total variance regularized solution strategy
has been described [52].

2.2. Alternating direction method of multipliers for PDIC microscopy with a plug-and-
play denoiser

We use the alternating direction method of multipliers [54] to integrate the denoising prior into a
physical forward model to achieve high-quality image restoration results. We consider phase
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retrieval incorporating total variance and deep denoiser as the following optimization problem:

min
u

∫
dρ

(︂
µ
2 |∂xu − ϕx |

2 + α |w| + γΦ(z) + τ
2 |u − z|2

)︂
subject to ∂yu − w = 0

(4)

where µ is a positive constant that controls the weight of the fidelity term, α is a positive constant
that controls the weight of TV regularization, Φ(z) denotes the denoiser, γ is a positive constant
that controls the degree of the denoiser activation, and τ is a penalty parameter. The denoiser
prior is introduced in Eq. (4) by Half Quadratic Splitting (HQS) technique [55] following [50].

This ADMM formalism combines the advantages of dual decomposition and augmented
Lagrangian methods, allowing for the incorporation of the dual update of the phase with TV
regularization. The Eq. (4) is solved by the introduction of an augmented Lagrangian function
[56,57]:

LA =

∫
dρ

(︃
α |w| +

β

2
|w − ∂yu|2 − λ(w − ∂yu) +

µ

2
|∂xu − ϕx |

2 + γΦ(z) +
τ

2
|u − z|2

)︃
(5)

and with the iterations:

w(k+1) = min
w

∫
dρ

(︂
α |w| +

β
2 |w − ∂yu(k) |

2
− λ(k)w

)︂
u(k+1) = min

u

∫
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β
2 |w
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2
+ λ(k)∂yu + µ
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2 + τ

2 |u − z(k) |2
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z(k+1) = min
z

∫
dρ

(︂
Φ(z) + τ

2γ |z − u(k+1) |
2
)︂

λ(k+1) = λ(k) − β(w(k+1) − ∂yu(k+1)).

(6)

where the superscript (k) means the quantities at k-th iteration. The first three equations in (6)
are the minimization of w, u, and z, respectively, and the fourth is for the dual variable update. In
particular, the intermediate phase u(k+1) is input to the denoiser Φ(z) to obtain the denoised phase
z(k+1).

This set of iterations reduces to

w(k+1) =
(︂
v(k) − α

β
v(k)
|v(k) |

)︂
H
(︂
|v(k) | − α

β

)︂
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−iµkxφ̃x−iβkyw̃(k+1)+ikyλ̃
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z(k+1) = min
z

∫
dρ

(︂
Φ(z) + τ

2γ |z − u(k+1) |
2
)︂

λ(k+1) = λ(k) − β(w(k+1) − ∂yu(k+1)).

(7)

Here vk ≡ ∂yu(k) + λ(k)

β , H is the Heaviside function, ϕ̃x, ũ, w̃, z̃ and λ̃ are the Fourier transform of
ϕx, u, w, z and λ, respectively, and kx, ky are the x and y components of the wavenumber inside
the Fourier space.

The beauty of the ADMM formalism is that each primal sub-problem has its physical meaning.
Updating u(k+1) projects the solution onto the data fidelity domain. It has a closed-form solution
in the Fourier domain. Updating w(k+1) and z(k+1) projects the solution to the image prior domain,
minimizing the total variance and DRUNet deep denoising, respectively. These steps blend data
fidelity, total variance regularization, and denoising in a unified framework for a versatile and
state-of-art recovery.

For the TV-regularization part, we follow Mead [58] and set µ = 1/Var(ϕx) and initialize
α = 20 and β = 20α. For the denoiser part, we follow Zhang et al. [50] and set γ = 0.23 and
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√︁
1/τ taking a series of values σk decreasing from ξ0 to

√︁
Var(u), i.e.,

σk = ξ0 to
√︁

Var(u) geometrically (k = 0, 1, . . . , K − 1)

γ = 0.23

τ = 1/σ2
k

(8)

An adaptive method for updating β is adopted for faster convergence by forcing the primary
and dual residues to converge to zero at a similar rate. The primary and dual residues for ADMM
are given by [54]

r(k+1) = ∂yu(k+1) − w(k+1) (9)

and
s(k+1) = −β ∂y

T (w(k+1) − w(k)) (10)

with their feasibility tolerance given by

εpri,(k) = εrel max{|∂yu(k) |, |w(k) |}

εdual,(k) = εrel |∂y
Tλ(k) |.

(11)

The update rule is formulated as

β(k+1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2β(k)

1
2 β

(k)

β(k)

if |r(k) |/εpri,(k)>η |s(k) |/εdual,(k)

if |r(k) |/εpri,(k)<η−1 |s(k) |/εdual,(k)

otherwise

(12)

with a typical choice η = 2 and εrel = 0.1. This choice of update rule was experimentally chosen
to accelerate the ADMM algorithm.

The iteration starts by setting.

u(0) = 0, w(0) = 0, z(0) = 0, λ(0) = 0 (13)

where 0 is a zero matrix of the same shape as ϕx. The error of ϕx is Var(ϕx) = (d/s)2(2γ0I0)
−1

where d is the pixel size after converting to ∂xu = ϕx over the discrete space of unit grids
and γ0 is the photon electron conversion factor. The error in u is found from experiments to
be Var(u) ≃ (2γ0I0)

−1 [52]. The value ξ0 sets the weakest denoiser penalty at the start of the
iterations. It controls the overall balance between total variance regularization and denoising.
It is set ξ0 = 0.1 for tissue specimens. The total number of denoiser strength levels is set at
K = 10. Multiple iterations at each denoiser strength level are conducted to reduce the total
residue ratio (|r(k) |/εpri,(k) + |s(k) |/εdual,(k))/2 below a given threshold (= 1). The final solution is
reached when the relative change in u is less than a threshold (10−3) or the image quality (for
example, sharpness) drops.

2.3. Denoiser architecture

While CNN denoisers hold potential, current methods are often constrained by specific choices
that underutilize CNN capabilities [59]. We note that it is crucial to accommodate varied noise
levels in plug-and-play techniques for denoising. We adopt a plug-and-play deep denoiser
DRUNet proposed by Zhang [50,60], a deep learning model composed of a downsampling
tower (capturing global information) and an upsampling tower (capturing local information).
DRUNet uses the prevalent U-Net [61] with a combination of the ResNet [62] architecture to



Research Article Vol. 14, No. 11 / 1 Nov 2023 / Biomedical Optics Express 5838

achieve high-performance and versatile image restoration (see Fig. 2). The denoiser takes a
noisy image with an additional noise map as input. The denoiser is trained under varying noise
levels, which not only allows the denoiser to be aware of the noise level in denoising but also
increases its robustness. The denoiser is imposed upon the iterative phase recovery with a steadily
increasing strength and decreasing noise level until reaching the measurement noise. The UNet
part includes four scales of 64, 128, 256, and 512 channels, respectively, and each scale has
skip connections between 2× 2 stride convolution (SConv) downscaling and 2× 2 transposed
convolution (TConv) upscaling layers. Downscaling and upscaling have four residual blocks in
each scale. No activation function is allowed in the SConv, TConv, first, and last convolutional
layers. Each residual block contains one activation function.

Fig. 2. DRUNet architecture. Each green box represents four consecutive Residual Blocks.
Each blue box represents a Stride Convolutional layer. Each pink box represents a Transposed
Convolutional layer.

2.4. DRUNet training details

We trained the DRUNet denoiser on a set of natural scene images, leveraging the benefits of
a large training dataset for convolutional networks. The training set consists of 400 grayscale
images of size 180× 180 (Trian400 [50]). The training process follows Zhang and Zuo [50]. A
stochastic optimization algorithm (ADAM) [63] minimizes the L1 loss between the denoised
images and the ground truth. The learning rate for the training starts from 10−4 and adaptively
reduces to 10−6 during epochs. For each iteration, 16 patches from the training data were
randomly selected. The training process continues until the loss function reaches the minimum.
The training takes 2000 epochs and requires approximately 20 hours on a GPU (Nvidia GeForce
GTX 1050). Figure 3 shows the training and validation loss of pre-trained DRUNet where the
noise level varies between 0 and 50 in training and is set at 25 in validation.

While pretraining on a biological dataset could be advantageous, it is worth noting that
biological phase images lack a definitive ground truth. Training using natural scenes proves more
beneficial [64] as natural scenes’ diverse structures and styles facilitate the denoiser’s ability to
learn complex images of varying types. As a result, the denoiser can generalize its performance
for diverse images.
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Fig. 3. The training and validation losses of the pre-trained DRUNet.

2.5. Experimental setup

Experiments were performed on an inverted epifluorescence DIC microscope (IX73, Olympus).
The light source was a Halogen 100W lamp filtered by a green filter (wavelength 0.545µm).
The numerical aperture for the condenser was 0.55, and the numerical apertures for the 40x
dry and 60x water immersion objectives were 0.6 and 1.2, respectively. The Stokes vector was
recorded by a polarization camera (Blackfly S Polarized, FLIR). Linear interpolation was used
to fill in the missing data of the polarization images (light intensity linearly polarized along 0,
45, 90, and 135 degrees) captured by the polarization camera. The histopathologic specimens
were hematoxylin and eosin (H&E) stained prostate cancer tissue sections (PR632, PR243c,
Biomax). Three methods were employed to recover phase images: the Fourier transform-based
solution, an iterative solution with a total variance regularization, and the Plug-and-Play deep
denoiser-enhanced approach proposed above.

3. Results

3.1. Phase retrieval of simulated data and phantom experiments

The proposed phase retrieval method was first validated using a simulated target of Siemens
star with a modified version of microlith [65] under the identical condition of the experimental
PDIC microscope using a 60x objective. Figure 4 shows the ground truth, the reconstructed
phase images by Fourier transform (FT), total variance regularized, and the TV-DRUNet denoiser
methods.

Phase profiles at various distances (blue: 5 µm, red: 3 µm, green: 2.3 µm, and magenta: 2 µm)
from the center are plotted in Fig. 5 to compare the performance of the three methods. The
TV+DRUNet outperforms the other two methods, reaching the theoretical resolution limit
(0.31 µm) under this condition (see Fig. 5(f)).

For the simulated Siemens star, root-mean-squared error (RMSE) and multiscale structural
similarity (MS-SSIM) between the recovered phase image by different approaches and the ground
truth were calculated (see Table 1). The TV+DRUNet method yields the smallest RMSE value
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Fig. 4. Phase retrieval of simulated Siemens star. (a) Ground truth, and the reconstructed
phase using (b) the Fourier Transform solution, (c) the total variance regularized solution,
and (d) the TV+DRUNet solution.

(0.0731) and the largest MS-SSIM (0.688) compared to the other two techniques. The phase
of Siemens star could be resolved at 2 microns from the center by the TV+DRUNet method
(the diffraction limit). In contrast, the Fourier Transform solution loses resolution in the vertical
direction at 3 microns from the center. The TV-regularized solution partially loses resolving
power at 2.3 microns from the center.

Table 1. Performance of Fourier Transform (FT), Total Variance (TV) regularized, and Total Variance
plus DRUNet denoiser (TV+DRUNet) Solutions for Siemens Star

Method Root Mean Square Error (RMSE) Multiscale structural similarity (MS-SSIM)

FT 0.0915 0.620

TV 0.0894 0.611

TV+DRUNet 0.0731 0.688

Figure 6 displays the SSIM histogram and map for the recovered Siemens Star. The SSIM
score spans between -1 and 1, with a value of 1 denoting a perfect match, while -1 represents
a complete mismatch. The histograms illustrate most SSIM scores clustering around 1 for the
TV+DRUNet solution and peaking at ∼0.8 for the TV solution. These SSIM distributions align
with their mean MS-SSIM values, i.e., 0.620 for FT, 0.611 for TV, and 0.688 for TV+DRUNet.
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Fig. 5. (a, c, e) show the reconstructed phase images by the Fourier transform, total variance
regularized, and TV+DRUNet methods. Examples of the corresponding phase profiles are
shown in (b), (d), and (f) at the radius of 5 µm (blue), 3 µm (red), 2.3 µm (green), and 2 µm
(magenta) from the center together with the ground truth (black). The phase profiles are
shown for the angular range between 0 and π.
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Fig. 6. (a, c, e) Histograms of per-pixel SSIM scores of the reconstructed phase images by
the Fourier transform, total variance regularized, and TV+DRUNet methods. (b, d, e) The
corresponding SSIM maps.
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Furthermore, we performed measurements of the phase of a 3.85µm silica sphere (Bangs
Laboratories, Catalog No. SS05002, refractive index: 1.43) embedded in glycerol (refractive
index: 1.47) under the water immersion 60x objective. Horizontal and vertical phase profiles were
plotted for three methods to show the improvements of the TV+DRUNet method. Horizontal
and vertical profiles (DIC shear direction) agree well with the ground truth for the TV+DRUNet
method (see Fig. 7(f)).

Fig. 7. The negative phase images of a 3.85µm silica sphere embedded in glycerol recovered
by the Fourier transform solution in (a), (d), the TV regulation method in (b), (e), and the
TV+DRUNet method in (c), (f). The horizontal and vertical profiles along the red and
green dashed lines in (a) – (c) are shown in (d) – (f), respectively.

3.2. Phase retrieval of histological tissue specimens

After validating PDIC microscopy with a plug-and-play denoiser for the simulated data and
phantom experiments, we demonstrated its performance on histological tissue sections. Figures 8
and 9 show the retrieved phases for prostate cancer tissue (adenocarcinoma, stage III) measured
with 40x objective and prostate cancer adjacent normal tissue measured with 60x objective,
respectively. Compared to the other two methods, the improvement in the phase recovery quality
by TV+DRUNet can be recognized in increased human perception of histological tissue features
such as fiber formation and cellular structure with yellow arrows pointing to representative
regions.

As evident in Fig. 9, TV regularization in phase retrieval effectively eliminates artifacts.
Nonetheless, some artifacts persist along the vertical direction, which is orthogonal to the shear
direction of the PDIC microscope. However, the residue artifacts observed in the method above
are almost gone by integrating the denoiser into the phase retrieval process, as depicted in
Fig. 9(h).

Owing to the lack of ground truth for the tissue phase maps, we adopt a no-reference quality
metric for superresolution images based on human perception [64] to measure the quality of phase
recovery without ground truth (see Table 2). This metric is observed to correlate closely with the
human perception of the image quality and outperforms other no-reference metrics. The score
ranges between 0 and 10. A low score indicates high perceptual quality and a high one suggests
low perceptual quality. An alternative metric is to compare the structural similarity between the
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Fig. 8. Prostate cancer tissue (adenocarcinoma, stage III) measured with 40x objective.
(a) H&E-stained histopathological image and reconstructed phase images using (b) Fourier
transform, (c) total variance regularized, and (d) total variance plus DRUNet denoiser
methods. Yellow arrows point to representative regions.

phase image and the corresponding H&E-stained image as they all reveal the underlying tissue
structure (see Table 3). The TV+DRUNet method outperforms the other two methods in both
metrics.

Table 2. Phase recovery perception score of Fourier transform (FT), Total Variance (TV)
regularized, and Total Variance plus DRUNet denoiser (TV+DRUNet) Solutions

Method Figure 8 Score Figure 9 Score

FT 3.608 2.98

TV 3.494 3.49

TV+DRUNet 3.380 2.69

Table 3. Phase recovery Multiscale Structural Similarity Index (MS-SSIM) of Fourier transform (FT),
Total Variance (TV) regularized, and Total Variance plus DRUNet denoiser (TV+DRUNet) Solutions

Method Figure 8 MS-SSIM Figure 9 MS-SSIM

FT 0.1478 0.3403

TV 0.1304 0.3393

TV+DRUNet 0.1505 0.3518
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Fig. 9. Prostate cancer adjacent normal tissue measured with 60x objective. (a) H&E-stained
histopathological image and reconstructed phase images using (b) Fourier transform, (c) total
variance regularized, and (d) total variance plus DRUNet denoiser methods. Additionally,
the region marked by the yellow rectangle in the H&E-stained histopathological image was
enlarged in (e)-(h). Yellow arrows point to representative regions.
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3.3. Discussions

Quantitative phase imaging by polarization differential interference contrast microscopy inherits
significant advantages of DIC microscopy, including no need for phase unwrapping, tolerance to
scattering, and the optical sectioning much sharper than other QPI methods [23]. Comparing
the three approaches for solving the phase for PDIC microscopy, the TV regularization strategy
improves the phase image quality by alleviating the imbalance in sensitivities along the DIC shear
and its orthogonal directions for phase retrieval from the partial derivatives along one single
axis alone. The artifacts in Fourier transform solutions [29,30] largely disappear with the TV
regularization strategy. Integrating total variance regularization and a deep denoiser (DRUNet)
further suppresses the residue artifacts. It achieves the highest phase image quality and accuracy
performance among the three methods. This outperformance originates from the complementary
priors of total variance as a locally smoothing internal prior, which captures the overall structure
and serves as a good starting point, and DRUNet denoiser as a deep global external prior, which
refines the details and retains the global structure [66].

The TV+DRUNet method yielded the lowest root-mean-square error (RMSE) and the highest
multiscale structural similarity index (MS-SSIM) values for Siemens star images. It also recovers
silica spheres in the best agreement with the ground truth. Furthermore, the phase images
recovered for histological tissue sections by TV+DRUNet are superior to other methods measured
by the score of super-resolution images based on human perception and structural similarity to
the H&E-stained image without ground truth. Traditional image quality metrics such as MSE
[67] require ground truth and do not match human perception. Ma et al. [64] showed that
images containing smoother content tend to exhibit higher perceptual scores, particularly when
lacking prominent edge textures and details. Therefore, a no-reference image quality assessment
for superresolution images based on human perception was evaluated for phase imaging of
histological tissue sections. The structural similarity between the H&E-stained images further
assesses how well the phase recovery maintains the tissue texture.

The superior performance of DRUNet denoiser in improving the phase retrieval quality and
accuracy is related to its ability to adapt to the underlying data structure and eliminate noise
while preserving fine details and updating the data each iteration of image restoration. It avoids
over-smoothing and reduces the impact of irrelevant degradation caused by the noise. In addition,
we find that the denoiser should be selected and customized according to the underlying physics.
DRUNet was modified to use the Tanh activation function instead of the ReLU function. This
choice of the activation function is essential to guarantee the symmetry requirement for phase
retrieval (odd function near zero). Combining total Variance and DRUNet with the ReLU
activation function leads to distorted phase recovery.

Figure 10 and Table 4 show that the utilization of the Tanh activation function resulted in
improved quality of the phase recovery compared to that with a ReLU activation function using
the Siemens star as an example. The artifact of the phase recovery using the ReLU activation
function is evident. Furthermore, the Tanh activation function outperforms the ReLU activation
function regarding RMSE and MS-SSIM for phase reconstruction quality (see Table 4).

Table 4. Performance of the Recovered Siemens Star by TV+DRUNet with ReLU or Tanh Activation
Function

Activation Function Root Mean Square Error (RMSE) Multiscale structural similarity (MS-SSIM)

ReLU 0.0800 0.681

Tanh 0.0731 0.688

The proposed adaptive algorithm achieved rapid convergence. Figure 11 shows one typical
behavior of phase recovery convergence using the Siemens star as an example. The relative error
between the recovered phase and the ground truth quickly decreased within the first ten rounds of
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Fig. 10. The recovered phase of Siemens star using the proposed algorithm using a denoiser
with (a) ReLU and (b) Tanh activation functions.

TV and DRU iterations. The following TV and DRU iterations enhance phase image quality,
with the relative error converging to around 6.2%. Although the relative errors do not drop
significantly after the 10th iteration, the quality metrics steadily improve with further iterations.
For example, the MS-SSIM score increases from 0.659 at the 10th iteration to 0.688 when the
iterations end.

Fig. 11. Relative errors between the recovered phase and the ground truth for the Siemens
star. Blue marks indicate total variance iterations, while red marks indicate denoising
iterations.

Finally, it is worth pointing out several limitations. Quantitative phase imaging by PDIC
microscopy assumes sample birefringence is weak and absorption variation is slow, as detailed
earlier [52]. Using a polarization camera, although providing advantages in speed and reliability,
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constrains the choice of imaging devices. The extension of PDIC microscopy for quantitative
phase and birefringence imaging is currently under development.

4. Conclusions

We have presented polarization differential interference contrast microscopy with Physics-inspired
plug-and-play denoiser for single-shot high-performance quantitative phase imaging. The details
of the iterative algorithm, which balances total variance regularization and a deep denoiser based
on the alternating direction method of multipliers, are provided. The pre-trained DRUNet denoiser
was modified to use the Tanh activation function to guarantee the symmetry requirement for phase
retrieval. In addition, we have introduced an adaptive strategy for accelerating measurement
noise-aware convergence. From validation on simulated data and phantom experiments and
demonstration of histological tissue sections, the phase retrieval by the denoiser-enhanced
PDIC microscopy achieved significantly higher quality and accuracy than the solution based
on Fourier transforms or the iterative solution with total variance regularization alone. Deep
denoiser-enhanced PDIC microscopy may find vast applications in biomedicine for single-shot,
high spatial resolution, and high-quality quantitative phase imaging.
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